28 research outputs found

    One-Parameter Homothetic Motion in the Hyperbolic Plane and Euler-Savary Formula

    Full text link
    In \cite{Mul} one-parameter planar motion was first introduced and the relations between absolute, relative, sliding velocities (and accelerations) in the Euclidean plane E2\mathbb{E}^2 were obtained. Moreover, the relations between the Complex velocities one-parameter motion in the Complex plane were provided by \cite{Mul}. One-parameter planar homothetic motion was defined in the Complex plane, \cite{Kur}. In this paper, analogous to homothetic motion in the Complex plane given by \cite{Kur}, one-parameter planar homothetic motion is defined in the Hyperbolic plane. Some characteristic properties about the velocity vectors, the acceleration vectors and the pole curves are given. Moreover, in the case of homothetic scale hh identically equal to 1, the results given in \cite{Yuc} are obtained as a special case. In addition, three hyperbolic planes, of which two are moving and the other one is fixed, are taken into consideration and a canonical relative system for one-parameter planar hyperbolic homothetic motion is defined. Euler-Savary formula, which gives the relationship between the curvatures of trajectory curves, is obtained with the help of this relative system

    Glimpses of the Octonions and Quaternions History and Todays Applications in Quantum Physics

    Full text link
    Before we dive into the accessibility stream of nowadays indicatory applications of octonions to computer and other sciences and to quantum physics let us focus for a while on the crucially relevant events for todays revival on interest to nonassociativity. Our reflections keep wandering back to the BrahmaguptaBrahmagupta FibonaccFibonacc two square identity and then via the EulerEuler four square identity up to the DegenDegen GgravesGgraves CayleyCayley eight square identity. These glimpses of history incline and invite us to retell the story on how about one month after quaternions have been carved on the BroughamianBroughamian bridge octonions were discovered by JohnJohn ThomasThomas GgravesGgraves, jurist and mathematician, a friend of WilliamWilliam RowanRowan HamiltonHamilton. As for today we just mention en passant quaternionic and octonionic quantum mechanics, generalization of CauchyCauchy RiemannRiemann equations for octonions and triality principle and G2G_2 group in spinor language in a descriptive way in order not to daunt non specialists. Relation to finite geometries is recalled and the links to the 7stones of seven sphere, seven imaginary octonions units in out of the PlatoPlato cave reality applications are appointed . This way we are welcomed back to primary ideas of HeisenbergHeisenberg, WheelerWheeler and other distinguished fathers of quantum mechanics and quantum gravity foundations.Comment: 26 pages, 7 figure

    Contractions, deformations and curvature

    Full text link
    The role of curvature in relation with Lie algebra contractions of the pseudo-ortogonal algebras so(p,q) is fully described by considering some associated symmetrical homogeneous spaces of constant curvature within a Cayley-Klein framework. We show that a given Lie algebra contraction can be interpreted geometrically as the zero-curvature limit of some underlying homogeneous space with constant curvature. In particular, we study in detail the contraction process for the three classical Riemannian spaces (spherical, Euclidean, hyperbolic), three non-relativistic (Newtonian) spacetimes and three relativistic ((anti-)de Sitter and Minkowskian) spacetimes. Next, from a different perspective, we make use of quantum deformations of Lie algebras in order to construct a family of spaces of non-constant curvature that can be interpreted as deformations of the above nine spaces. In this framework, the quantum deformation parameter is identified as the parameter that controls the curvature of such "quantum" spaces.Comment: 17 pages. Based on the talk given in the Oberwolfach workshop: Deformations and Contractions in Mathematics and Physics (Germany, january 2006) organized by M. de Montigny, A. Fialowski, S. Novikov and M. Schlichenmaie

    Higher spin quaternion waves in the Klein-Gordon theory

    Full text link
    Electromagnetic interactions are discussed in the context of the Klein-Gordon fermion equation. The Mott scattering amplitude is derived in leading order perturbation theory and the result of the Dirac theory is reproduced except for an overall factor of sixteen. The discrepancy is not resolved as the study points into another direction. The vertex structures involved in the scattering calculations indicate the relevance of a modified Klein-Gordon equation, which takes into account the number of polarization states of the considered quantum field. In this equation the d'Alembertian is acting on quaternion-like plane waves, which can be generalized to representations of arbitrary spin. The method provides the same relation between mass and spin that has been found previously by Majorana, Gelfand, and Yaglom in infinite spin theories

    Inequalities for a simplex and the number e

    No full text

    Lexington Leader

    No full text
    Weekly newspaper from Lexington, Oklahoma that includes local, state, and national news along with advertising
    corecore